Publications

Preprints

Peer-reviewed journal articles

2024

[X] J. Byggmästar, F. Djurabekova, K. Nordlund, Threshold displacement energies in refractory high-entropy alloys, submitted.

[X] R. He, J. Zhao, J. Byggmästar, H. He, F. Djurabekova, Ultra high stability of oxygen sublattice in β-Ga2O3, submitted https://arxiv.org/abs/2404.10451

[X] X. An, E. Lu, I. Makkonen, G. Wei, J. Byggmästar, J. Zhu, K. Mizohata, Z. Chen, F. Djurabekova, W. Hu, H. Deng, T. Yang, F. Tuomisto Enhanced migration of mono-vacancies in AlxFeCoCrNi high entropy alloys, submitted.

[X] A. Litnovksy, F. Granberg, J. Byggmästar, K. Nordlund, Sputtering of single crystal rhodium with low energy ions, submitted.

[X] A. Liski, T. Vuoriheimo, J. Byggmästar, K. Mizohata, K. Heinola, T. Ahlgren, K-K. Tseng, T-E. Shen, C-W. Tsai, J-W. Yeh, K. Nordlund, F. Djurabekova, F. Tuomisto, Solubility of hydrogen in WMoTaNbV high-entropy alloy, submitted.

[X] J. Zhang, J. Zhao, J. Byggmästar, E.J. Frankberg, A. Kuronen, Large-scale atomistic study of plasticity in amorphous gallium oxide with a machine-learning potential, submitted.

[X] H. He, J. Zhao, J. Byggmästar, R. He, K. Nordlund, C. He, F. Djurabekova, Threshold displacement energy map of Frenkel pair generation in from machine-learning-driven molecular dynamics simulations, submitted https://arxiv.org/abs/2401.14039

[X] G.Y. Wei, J. Byggmästar, J. Cui, K. Nordlund, J. Ren, F. Djurabekova, Revealing the critical role of vanadium in radiation damage of tungsten-based alloys, submitted.

[39] Y. Luo, J Byggmästar, M.R. Daymond, L.K. Béland, Interatomic force fields for zirconium based on the embedded atom method and the tabulated Gaussian Approximation Potential, Computational Materials Science, 233, 112730 (2024) https://doi.org/10.1016/j.commatsci.2023.112730

2023

[38] J. Zhao, J. Byggmästar, H. He, K. Nordlund, F. Djurabekova, M. Hua, Complex Ga2O3 Polymorphs Explored by Accurate and General-Purpose Machine-Learning Interatomic Potentials, npj Computational Materials, 9, 159 (2023) https://arxiv.org/abs/2212.03096, https://doi.org/10.1038/s41524-023-01117-1

[37] K. Mulewska, F.J. Dominguez-Gutierrez, D. Kalita, J. Byggmästar, G.Y. Wei, W. Chromiński, S. Papanikolaou, M.J. Alava, Ł. Kurpaska, J. Jagielski, Self–ion irradiation of high purity iron: Unveiling plasticity mechanisms through nanoindentation experiments and large-scale atomistic simulations, Journal of Nuclear Materials, 586, 154690 (2023), https://doi.org/10.1016/j.jnucmat.2023.154690

[36] J. Liu, J. Byggmästar, Z. Fan, P. Qian, Y. Su, Large-scale machine-learning molecular dynamics simulation of primary radiation damage in tungsten, Physical Review B, 108, 054312 (2023) https://doi.org/10.1103/PhysRevB.108.054312

[35] G.Y. Wei, J. Byggmästar, J. Cui, K. Nordlund, J. Ren, F. Djurabekova, Effects of lattice and mass mismatch on primary radiation damage in W-Ta and W-Mo binary alloys, Journal of Nuclear Materials, 583, 154534 (2023) https://doi.org/10.1016/j.jnucmat.2023.154534

[34] F. J. Domínguez-Gutiérrez, P. Grigorev, A. Naghdi, J. Byggmästar, G. Y. Wei, T. D. Swinburne, S. Papanikolaou, M. J. Alava, Nanoindentation of tungsten: From interatomic potentials to dislocation plasticity mechanisms, Physical Review Materials, 7, 043603 (2023) https://doi.org/10.1103/PhysRevMaterials.7.043603

[33] R. Abram, D. Chrobak, J. Byggmästar, K. Nordlund, R. Nowak, Comprehensive structural changes in nanoscale-deformed silicon modelled with an integrated atomic potential, Materialia, 101761 (2023) https://doi.org/10.1016/j.mtla.2023.101761

[32] M. Koskenniemi, J. Byggmästar, K. Nordlund, F. Djurabekova, Efficient atomistic simulations of radiation damage in W and W-Mo using machine-learning potentials, Journal of Nuclear Materials, 577, 154325 (2023), https://arxiv.org/abs/2208.00804, https://doi.org/10.1016/j.jnucmat.2023.154325

[31] F. Granberg, D. R. Mason, J. Byggmästar, Effect of simulation technique on the high-dose damage in tungsten, Computational Materials Science, 217, 111902 (2023), https://doi.org/10.1016/j.commatsci.2022.111902

2022

[30] S. Sassi, M. Heikinheimo, K. Tuominen, A. Kuronen, J. Byggmästar, K. Nordlund, N. Mirabolfathi, Energy loss in low energy nuclear recoils in dark matter detector materials, Physical Review D, 106, 063012 (2022), https://arxiv.org/abs/2206.06772, https://doi.org/10.1103/PhysRevD.106.063012

[29] J. Byggmästar, K. Nordlund, and F. Djurabekova, Simple machine-learned interatomic potentials for complex alloys, Physical Review Materials, 6, 083801 (2022), https://arxiv.org/abs/2203.08458, https://doi.org/10.1103/PhysRevMaterials.6.083801

[28] E. A. Hodille, J. Byggmästar, Y. Ferro, and K. Nordlund, Molecular dynamics study of hydrogen isotopes at the Be/BeO interface, Journal of Physics: Condensed Matter, 34 405001 (2022), https://doi.org/10.1088/1361-648X/ac8328

[27] J. Byggmästar, G. Nikoulis, A. Fellman, F. Granberg, F. Djurabekova, K. Nordlund, Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron, Journal of Physics: Condensed Matter 34 305402 (2022), https://arxiv.org/abs/2201.10237, https://doi.org/10.1088/1361-648X/ac6f39

[26] A. Esfandiarpour, J. Byggmästar, J. P. Balbuena, M. J. Caturla, K. Nordlund, F. Granberg, Effect of cascade overlap and C15 clusters on the damage evolution in Fe: An OKMC study, Materialia 21 101344 (2022), https://doi.org/10.1016/j.mtla.2022.101344

2021

[25] A. Hamedani, J. Byggmästar, F. Djurabekova, G. Alahyarizadeh, R. Ghaderi, A. Minuchehr, and K. Nordlund, Primary radiation damage in silicon from the viewpoint of a machine learning interatomic potential, Physical Review Materials 5, 114603 (2021), https://doi.org/10.1103/PhysRevMaterials.5.114603

[24] J. Byggmästar, K. Nordlund, and F. Djurabekova, Modelling refractory high-entropy alloys with machine-learned interatomic potentials: Defects and segregation, Physical Review B, 104, 104101 (2021), https://arxiv.org/abs/2106.03369, https://doi.org/10.1103/PhysRevB.104.104101

[23] J. Zhao, J. Byggmästar, Z. Zhang, F. Djurabekova, K. Nordlund, M. Hua, Phase transition of two-dimensional ferroelectric and paraelectric Ga2O3 monolayers: A density functional theory and machine learning study, Physical Review B, 104, 054107 (2021), https://arxiv.org/abs/2105.12943, https://doi.org/10.1103/PhysRevB.104.054107

[22] F. Granberg, J. Byggmästar, K. Nordlund, Molecular dynamics simulations of high-dose damage production and defect evolution in tungsten, Journal of Nuclear Materials, 556, 153158 (2021), https://doi.org/10.1016/j.jnucmat.2021.153158

[21] G. Nikoulis, J Byggmästar, J. Kioseoglou, K. Nordlund, and F. Djurabekova, Machine-learning interatomic potential for W-Mo alloys, Journal of Physics: Condensed Matter, 33, 315403 (2021), https://doi.org/10.1088/1361-648X/ac03d1

[20] F. J. Domínguez-Gutiérrez, J Byggmästar, K. Nordlund, F. Djurabekova, and U. von Toussaint, Computational study of crystal defects formation in Mo by machine learned molecular dynamics simulations, Modelling Simul. Mater. Sci. Eng. (2021), https://arxiv.org/abs/2010.01976, https://doi.org/10.1088/1361-651X/abf152

[19] F. Granberg and J. Byggmästar, Effect of interatomic potential on the sputtering of Pd surfaces, Computational Materials Science, 110134 (2021), https://doi.org/10.1016/j.commatsci.2020.110134

2020

[18] J. Byggmästar, K. Nordlund, and F. Djurabekova, Gaussian approximation potentials for body-centered-cubic transition metals, Physical Review Materials, 4, 093802 (2020), https://arxiv.org/abs/2006.14365, https://doi.org/10.1103/PhysRevMaterials.4.093802

[17] A. Hamedani. J. Byggmästar, F. Djurabekova, G. Alahyarizadeh, R. Ghaderi, A. Minuchehr, and K. Nordlund, Insights into the primary radiation damage of silicon by a machine learning interatomic potential, Materials Research Letters, 8, 10, 364-372 (2020), https://doi.org/10.1080/21663831.2020.1771451

[16] E. A. Hodille, J. Byggmästar, E. Safi, and K. Nordlund, Sputtering of beryllium oxide by deuterium at various temperatures simulated with molecular dynamics, Physica Scripta, 2020, 014024 (2020), https://doi.org/10.1088/1402-4896/ab43fa

[15] F. J. Domínguez-Gutiérrez, J Byggmästar, K. Nordlund, F. Djurabekova, and U. von Toussaint, On the classification and quantification of crystal defects after energetic bombardment by machine learned molecular dynamics simulations, Nuclear Materials and Energy, 22, 100724 (2020), https://arxiv.org/abs/1910.12052, https://doi.org/10.1016/j.nme.2019.100724

[14] J. Byggmästar and F. Granberg, Dynamical stability of radiation-induced C15 clusters in iron, Journal of Nuclear Materials, 528, 151893 (2020) , https://arxiv.org/abs/1909.09818, https://doi.org/10.1016/j.jnucmat.2019.151893

[13] F. Granberg, J. Byggmästar, and K. Nordlund, Defect accumulation and evolution during prolonged irradiation of Fe and FeCr alloys, Journal of Nuclear Materials, 528, 151843 (2020), https://doi.org/10.1016/j.jnucmat.2019.151843

2019

[12] J. Byggmästar, A. Hamedani, K. Nordlund, and F. Djurabekova, Machine-learning interatomic potential for radiation damage and defects in tungsten, Physical Review B, 100, 144105 (2019), https://arxiv.org/abs/1908.07330, https://doi.org/10.1103/PhysRevB.100.144105

[11] A. Fellman, A. E. Sand, J. Byggmästar, and K. Nordlund, Radiation damage in tungsten from cascade overlap with voids and vacancy clusters, Journal of Physics: Condensed Matter, 31, 405402 (2019), https://doi.org/10.1088/1361-648X/ab2ea4

[10] F. Granberg, J. Byggmästar, and K. Nordlund, Cascade overlap with vacancy-type defects in Fe, The European Physical Journal B, 92, 146 (2019), https://doi.org/10.1140/epjb/e2019-100240-3

[9] J. Byggmästar, F. Granberg, A. E. Sand, A. Pirttikoski, R. Alexander, M-C. Marinica, and K. Nordlund, Collision cascades overlapping with self-interstitial defect clusters in Fe and W, Journal of Physics: Condensed Matter, 31, 245402 (2019), https://doi.org/10.1088/1361-648X/ab0682

[8] J. Byggmästar, M. Nagel, K. Albe, K. O. E. Henriksson, and K. Nordlund, Analytical interatomic bond-order potential for simulations of oxygen defects in iron, Journal of Physics: Condensed Matter, 31, 215401 (2019), https://doi.org/10.1088/1361-648X/ab0931

[7] E. A. Hodille, J. Byggmästar, E. Safi, and K. Nordlund, Molecular dynamics simulation of beryllium oxide irradiated by deuterium ions: sputtering and reflection, Journal of Physics: Condensed Matter, 31, 185001 (2019), https://doi.org/10.1088/1361-648X/ab04d7

2018

[6] A. E. Sand, J. Byggmästar, A. Zitting, and K. Nordlund, Defect structures and statistics in overlapping cascade damage in fusion-relevant bcc metals, Journal of Nuclear Materials, 511, 64-74 (2018), https://doi.org/10.1016/j.jnucmat.2018.08.049

[5] J. Byggmästar, F. Granberg, and K. Nordlund, Effects of the short-range repulsive potential on cascade damage in iron, Journal of Nuclear Materials, 508, 530-539 (2018), https://doi.org/10.1016/j.jnucmat.2018.06.005

[4] J. Byggmästar, E. A. Hodille, Y. Ferro, and K. Nordlund, Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions, Journal of Physics: Condensed Matter, 30, 135001 (2018), https://doi.org/10.1088/1361-648X/aaafb3

2017

[3] F. Granberg, J. Byggmästar, A. E. Sand, and K. Nordlund, Cascade debris overlap mechanism of <100> dislocation loop formation in Fe and FeCr, Europhysics Letters, 119, 56003 (2017), https://doi.org/10.1209/0295-5075/119/56003

[2] J. Byggmästar, F. Granberg, and K. Nordlund, Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in alpha-Fe, Physical Review Materials, 1, 053603 (2017), https://doi.org/10.1103/PhysRevMaterials.1.053603

2015

[1] J. Byggmästar, F. Granberg, A. Kuronen, K. Nordlund, and K. O. E. Henriksson, Tensile testing of Fe and FeCr nanowires using molecular dynamics simulations, Journal of Applied Physics, 117, 014313 (2015), http://dx.doi.org/10.1063/1.4905314

Academic theses

PhD thesis: Analytical and machine-learning interatomic potentials for radiation damage in fusion reactor materials (2020) http://urn.fi/URN:ISBN:978-951-51-6035-5

MSc thesis: Development of interatomic potentials in the Tersoff-Albe formalism for metal compounds (2016) http://urn.fi/URN:NBN:fi-fe2017112252123

BSc thesis: Uttöjning av Fe- och FeCr-nanotrådar (2015)

links